Geography and Social Space: Evidence from Watersheds and Dialects

Kalle Kappner (HU Berlin)
Nikolaus Wolf (HU Berlin)
with Sascha O. Becker (Monash)
and Marvin Suesse (Trinity)

DH Coffee Talks

December 2021

Motivation

- ► How does Physical Geography shape Social Space?
- Economics focus on
 - endowments
 - disease environments
 - cost of mobility

This Project

➤ Can watersheds (drainage divides) affect the intensity of social interaction across space? How large and how persistent are these effects?

This Project

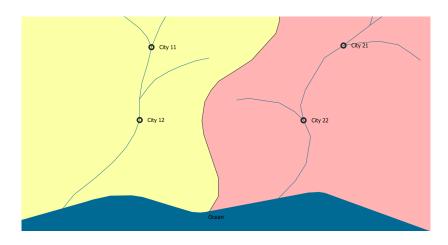


Figure 1: Example map

Data and empirical strategy

- Use data on German dialects to capture persistent features of social space: Digitaler Wenker-Atlas (DiWA) based on Wenker (1887)
- Use data on European watersheds with Pfaffstetter Coding: Catchment Characterisation and Modelling (CCM2)
- Map these two spatially continuous measures to discrete grid cells
- Merge and test for causal effects of watersheds on dialect space

Data and empirical strategy

- Correlate similarity measures on the cell-pair level:
 - Linguistic similarity à la Falck et al. (2012), Lameli et al (2015)

$$m{I}^i = \{I^i_1, I^i_2, \dots, I^i_K\}$$
 with $I^i_k \in \{0,1\}$ for K realizations in M Wenker maps $L_{ij} = (m{I}^i x m{I}^j)/M \in [0,1]$

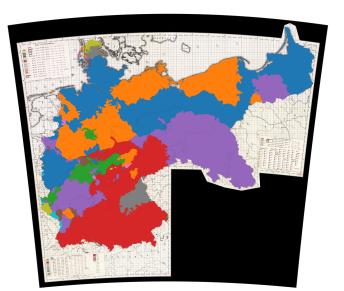
"Pfaffstetter similarity":

$$P_{ij}^{p} = \begin{cases} 1 \text{ if } i, j \text{ in same watershed at Pfaffstetter level } p \\ 0 \text{ else} \end{cases}$$

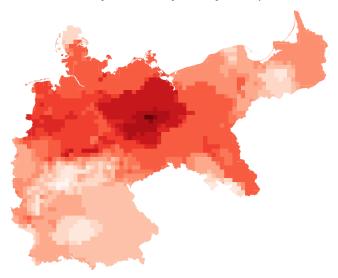
$$P_{ij} = \sum_{p=1}^{9} P_{ij}^{p}/9 \in [0,1]$$

➤ Control for cell fixed effects and elevation-corrected distance (Tobler, 1993):

$$L_{ij} = \alpha_i + \alpha_j + \beta P_{ij} + \gamma dist_{ij} + \epsilon_{ij}$$

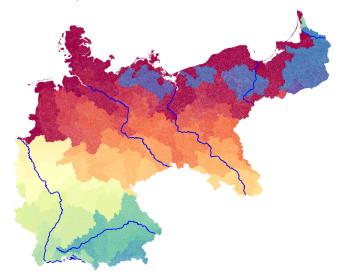

Linguistic similarity: Wenker's original maps

Georg Wenker's original map no. 5 Shading shows variation in the pronounciation of 'flieg-en'.

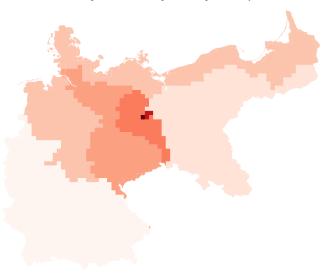

Linguistic similarity: Wenker's original maps

Georg Wenker's original map no. 5 Shading shows variation in the pronounciation of 'flieg-en'.

Linguistic similarity: Our measure


Linguistic similarity with Berlin 13 Categories. Darker shading indicates higher similarity.

Pfaffstetter similarity: European watersheds


CCM2 watersheds

Map shows 201 distinct watersheds at the 5th Pfaffstetter level.

Pfaffstetter similarity: Our measure

Pfaffstetter similarity with Berlin 9 Categories. Darker shading indicates higher similarity.

Some preliminary correlations

	OLS	OLS	OLS	PPML
Dep. var.: Linguistic similarity				
Pfaffstetter similarity	.52***	.51***	.40***	.34***
	(.01)	(.00)	(.01)	(.01)
In(distance in km)		.018	.002	.002
		(.002)	(.002)	(.002)
Cell FEs	no	no	yes	yes
N	3176460	3176460	3176458	3176458
R2	.14	.14	.35	.04

Table 1: Regression results. Note: Marginal effects. Both similarity measures run from 0 to 1. Robust SE clustered at the grid level in parantheses.

Methodological Challenges

- ► Measuring dialect similarity
- Measuring topological watersheds
- Definition of observations (and N)
- Omitted variables, spatial correlation
- ► Modern Outcome Variables at fine-level of disaggregation, direction-specific data?

Outlook

- Watershed topology with potentially large effect on social spaces
- ▶ Need more and better data, tackle methodological challenges